Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(2): e12413, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353485

RESUMO

Small-for-gestational age (SGA) neonates exhibit increased perinatal morbidity and mortality, and a greater risk of developing chronic diseases in adulthood. Currently, no effective maternal blood-based screening methods for determining SGA risk are available. We used a high-resolution MS/MSALL shotgun lipidomic approach to explore the lipid profiles of small extracellular vesicles (sEV) released from the placenta into the circulation of pregnant individuals. Samples were acquired from 195 normal and 41 SGA pregnancies. Lipid profiles were determined serially across pregnancy. We identified specific lipid signatures of placental sEVs that define the trajectory of a normal pregnancy and their changes occurring in relation to maternal characteristics (parity and ethnicity) and birthweight centile. We constructed a multivariate model demonstrating that specific lipid features of circulating placental sEVs, particularly during early gestation, are highly predictive of SGA infants. Lipidomic-based biomarker development promises to improve the early detection of pregnancies at risk of developing SGA, an unmet clinical need in obstetrics.


Assuntos
Vesículas Extracelulares , Retardo do Crescimento Fetal , Recém-Nascido , Gravidez , Feminino , Humanos , Retardo do Crescimento Fetal/diagnóstico , Placenta , Espectrometria de Massas em Tandem , Lipídeos
2.
Biomedicines ; 11(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36979912

RESUMO

Disturbances of lipid metabolism are typical in diabetes. Our objective was to characterize and compare placental sphingolipid metabolism in type 1 (T1D) and 2 (T2D) diabetic pregnancies and in non-diabetic controls. Placental samples from T1D, T2D, and control pregnancies were processed for sphingolipid analysis using tandem mass spectrometry. Western blotting, enzyme activity, and immunofluorescence analyses were used to study sphingolipid regulatory enzymes. Placental ceramide levels were lower in T1D and T2D compared to controls, which was associated with an upregulation of the ceramide degrading enzyme acid ceramidase (ASAH1). Increased placental ceramide content was found in T1D complicated by preeclampsia. Similarly, elevated ceramides were observed in T1D and T2D pregnancies with poor glycemic control. The protein levels and activity of sphingosine kinases (SPHK) that produce sphingoid-1-phosphates (S1P) were highest in T2D. Furthermore, SPHK levels were upregulated in T1D and T2D pregnancies with fetal macrosomia. In vitro experiments using trophoblastic JEG3 cells demonstrated increased SPHK expression and activity following glucose and insulin treatments. Specific changes in the placental sphingolipidome characterize T1D and T2D placentae depending on the type of diabetes and feto-maternal complications. Increased exposure to insulin and glucose is a plausible contributor to the upregulation of the SPHK-S1P-axis in diabetic placentae.

3.
Endocrinology ; 164(4)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36683415

RESUMO

Preeclampsia (PE) is a major obstetric complication that is challenging to predict. Currently, there are limited tools to assess placental health/function in crucial gestational periods for diagnosis and early prediction. The glycoprotein fibronectin (FN) is augmented in PE placentae, and associated with reduced activity of JMJD6, an oxygen sensor that regulates placental FN processing. Evidence implicates placenta-derived small extracellular vesicles (sEVs) in the pathogenesis of pregnancy-associated disorders. Here, we examined the utility of FN and JMJD6 in placental sEVs as putative markers for early- and late-onset PE (E-PE and L-PE). Maternal plasma was obtained from venous blood collected longitudinally during pregnancy (10-14, 16-22, and 26-32 weeks of gestation and at delivery) in normotensive term control, preterm control, L-PE, E-PE, and gestational hypertensive individuals. Placenta-derived sEVs were isolated and their FN and JMJD6 content and JMJD6 activity were measured. In women that went on to develop preeclampsia, FN content of circulating placental sEVs was significantly elevated as early as 10 to 14 weeks of gestation and remained augmented until the time of delivery. This was accompanied by a depletion in JMJD6 content. Multivariate receiver operating characteristic analysis revealed high predictive power for FN and JMJD6 as early markers of E-PE and L-PE. In vitro, hypoxia or JMJD6 loss promoted FN accumulation in sEVs that was reverted on restoring cellular iron balance with the natural compound, Hinokitiol. Elevated FN, along with diminished JMJD6 in circulating placental sEVs, serves as an early molecular signature for the detection of different hypertensive disorders of pregnancy and their severity.


Assuntos
Vesículas Extracelulares , Hipertensão , Pré-Eclâmpsia , Recém-Nascido , Gravidez , Humanos , Feminino , Pré-Eclâmpsia/diagnóstico , Fibronectinas , Placenta , Vesículas Extracelulares/patologia , Hipóxia , Histona Desmetilases com o Domínio Jumonji
4.
JCI Insight ; 7(23)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36227697

RESUMO

Preeclampsia is a serious pregnancy disorder that lacks effective treatments other than delivery. Improper sensing of oxygen changes during placentation by prolyl hydroxylases (PHDs), specifically PHD2, causes placental hypoxia-inducible factor-1 (HIF1) buildup and abnormal downstream signaling in early-onset preeclampsia, yet therapeutic targeting of HIF1 has never been attempted. Here we generated a conditional (placenta-specific) knockout of Phd2 in mice (Phd2-/- cKO) to reproduce HIF1 excess and to assess anti-HIF therapy. Conditional deletion of Phd2 in the junctional zone during pregnancy increased placental HIF1 content, resulting in abnormal placentation, impaired remodeling of the uterine spiral arteries, and fetal growth restriction. Pregnant dams developed new-onset hypertension at midgestation (E9.5) in addition to proteinuria and renal and cardiac pathology, hallmarks of severe preeclampsia in humans. Daily injection of acriflavine, a small molecule inhibitor of HIF1, to pregnant Phd2-/- cKO mice from E7.5 (prior to hypertension) or E10.5 (after hypertension had been established) to E14.5 corrected placental dysmorphologies and improved fetal growth. Moreover, it reduced maternal blood pressure and reverted renal and myocardial pathology. Thus, therapeutic targeting of the HIF pathway may improve placental development and function, as well as maternal and fetal health, in preeclampsia.


Assuntos
Hipertensão , Prolil Hidroxilases , Gravidez , Humanos , Feminino , Camundongos , Animais , Acriflavina , Fator 1 Induzível por Hipóxia , Placenta , Hipertensão/tratamento farmacológico
5.
Cell Death Dis ; 13(2): 191, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35220394

RESUMO

Dynamic changes in physiologic oxygen are required for proper placenta development; yet, when low-oxygen levels persist, placental development is halted, culminating in preeclampsia (PE), a serious complication of pregnancy. Considering mitochondria's function is intimately linked to oxygen changes, we investigated the impact of oxygen on mitochondrial dynamics in placental mesenchymal stromal cells (pMSCs) that are vital for proper placental development. Transmission electron microscopy, proximity ligation assays for mitochondrial VDAC1 and endoplasmic reticulum IP3R, and immunoanalyses of p-DRP1 and OPA1, demonstrate that low-oxygen conditions in early 1st trimester and PE promote mitochondrial fission in pMSCs. Increased mitochondrial fission of mesenchymal cells was confirmed in whole PE placental tissue sections. Inhibition of DRP1 oligomerization with MDiVi-1 shows that low oxygen-induced mitochondrial fission is a direct consequence of DRP1 activation, likely via HIF1. Mitophagy, a downstream event prompted by mitochondrial fission, is a prominent outcome in PE, but not 1st trimester pMSCs. We also investigated whether mesenchymal-epithelial interactions affect mitochondrial dynamics of trophoblasts in PE placentae. Exposure of trophoblastic JEG3 cells to exosomes of preeclamptic pMSCs caused heightened mitochondrial fission in the cells via a sphingomyelin-dependent mechanism that was restored by MDiVi-1. Our data uncovered dichotomous regulation of mitochondrial fission and health in human placental mesenchymal cells under physiologic and pathologic hypoxic conditions and its impact on neighboring trophoblast cells.


Assuntos
Células-Tronco Mesenquimais , Pré-Eclâmpsia , Linhagem Celular Tumoral , Feminino , Homeostase , Humanos , Hipóxia/metabolismo , Células-Tronco Mesenquimais/patologia , Mitocôndrias/patologia , Dinâmica Mitocondrial , Oxigênio/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Trofoblastos/metabolismo
6.
Front Cell Dev Biol ; 9: 652607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055782

RESUMO

The mechanisms contributing to excessive fibronectin in preeclampsia, a pregnancy-related disorder, remain unknown. Herein, we investigated the role of JMJD6, an O2- and Fe2+-dependent enzyme, in mediating placental fibronectin processing and function. MALDI-TOF identified fibronectin as a novel target of JMJD6-mediated lysyl hydroxylation, preceding fibronectin glycosylation, deposition, and degradation. In preeclamptic placentae, fibronectin accumulated primarily in lysosomes of the mesenchyme. Using primary placental mesenchymal cells (pMSCs), we found that fibronectin fibril formation and turnover were markedly impeded in preeclamptic pMSCs, partly due to impaired lysosomal degradation. JMJD6 knockdown in control pMSCs recapitulated the preeclamptic FN phenotype. Importantly, preeclamptic pMSCs had less total and labile Fe2+ and Hinokitiol treatment rescued fibronectin assembly and promoted lysosomal degradation. Time-lapse imaging demonstrated that defective ECM deposition by preeclamptic pMSCs impeded HTR-8/SVneo cell migration, which was rescued upon Hinokitiol exposure. Our findings reveal new Fe2+-dependent mechanisms controlling fibronectin homeostasis/function in the placenta that go awry in preeclampsia.

7.
Front Cell Dev Biol ; 9: 652651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017832

RESUMO

Aberrant ceramide build-up in preeclampsia, a serious disorder of pregnancy, causes exuberant autophagy-mediated trophoblast cell death. The significance of ceramide accumulation for lysosomal biogenesis in preeclampsia is unknown. Here we report that lysosome formation is markedly increased in trophoblast cells of early-onset preeclamptic placentae, in particular in syncytiotrophoblasts. This is accompanied by augmented levels of transcription factor EB (TFEB). In vitro and in vivo experiments demonstrate that ceramide increases TFEB expression and nuclear translocation and induces lysosomal formation and exocytosis. Further, we show that TFEB directly regulates the expression of lysosomal sphingomyelin phosphodiesterase (L-SMPD1) that degrades sphingomyelin to ceramide. In early-onset preeclampsia, ceramide-induced lysosomal exocytosis carries L-SMPD1 to the apical membrane of the syncytial epithelium, resulting in ceramide accumulation in lipid rafts and release of active L-SMPD1 via ceramide-enriched exosomes into the maternal circulation. The SMPD1-containing exosomes promote endothelial activation and impair endothelial tubule formation in vitro. Both exosome-induced processes are attenuated by SMPD1 inhibitors. These findings suggest that ceramide-induced lysosomal biogenesis and exocytosis in preeclamptic placentae contributes to maternal endothelial dysfunction, characteristic of this pathology.

8.
JCI Insight ; 4(8)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30996134

RESUMO

Human placenta development and a successful pregnancy is incumbent upon precise oxygen-dependent control of trophoblast migration/invasion. Persistent low oxygen leading to failed trophoblast invasion promotes inadequate spiral artery remodeling, a characteristic of preeclampsia. Angiomotin (AMOT) is a multifaceted scaffolding protein involved in cell polarity and migration, yet its upstream regulation and significance in the human placenta remain unknown. Herein, we show that AMOT is primarily expressed in migratory extravillous trophoblast cells (EVTs) of the intermediate and distal anchoring column. Its expression increases after 10 weeks of gestation when oxygen tension rises and EVT migration/invasion peaks. Time-lapse imaging confirmed that the AMOT 80-kDa isoform promotes migration of trophoblastic JEG3 and HTR-8/SVneo cells. In preeclampsia, however, AMOT expression is decreased and its localization to migratory fetomaternal interface EVTs is disrupted. We demonstrate that Jumonji C domain-containing protein 6 (JMJD6), an oxygen sensor, positively regulates AMOT via oxygen-dependent lysyl hydroxylation. Furthermore, in vitro and ex vivo studies show that transforming growth factor-ß (TGF-ß) regulates AMOT expression, its interaction with polarity protein PAR6, and its subcellular redistribution from tight junctions to cytoskeleton. Our data reveal an oxygen- and TGF-ß-driven migratory function for AMOT in the human placenta, and implicate its deficiency in impaired trophoblast migration that plagues preeclampsia.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Oxigênio/metabolismo , Pré-Eclâmpsia/patologia , Trofoblastos/patologia , Angiomotinas , Linhagem Celular Tumoral , Movimento Celular , Suscetibilidade a Doenças , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Microscopia Intravital , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Placentação , Gravidez , Primeiro Trimestre da Gravidez , Isoformas de Proteínas/metabolismo , Imagem com Lapso de Tempo , Trofoblastos/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3298-3308, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30053437

RESUMO

The von Hippel Lindau tumour suppressor (VHL) protein is essential for proper placental development and is downregulated in preeclampsia (PE), a devastating disorder of pregnancy typified by chronic hypoxia. To date, knowledge on VHL genetic and epigenetic regulation is restricted to inactivating mutations and loss-of-heterozygosity in renal cell carcinomas. Herein, we sought to examine whether VHL DNA is subject to differential methylation, and if so, whether it is altered in early-onset PE (E-PE). Sodium bisulfite modification and methylation-specific PCR analysis revealed that VHL is subject to extensive methylation in a CpG-rich region within its promoter in the human placenta. Notably, we detected significant differences in methylation in E-PE placentae relative to normotensive age-matched controls at key transcription factor binding sites, including that of the transcriptional repressor E2F4. Treatment of JEG3 cells with 5-Aza-2'-deoxycytidine, revealed that loss of DNA methylation promoted VHL transcription by attenuating VHL association with E2F4. RNAi knockdown of E2F4 in vitro confirmed its function on VHL repression. Exposure of JEG3 cells to transforming growth factor beta (TGFß) downregulated VHL mRNA. In line with elevated levels of TGFß3 in E-PE, chromatin immunoprecipitation assays revealed that E2F4-VHL association was enhanced upon TGFß3 treatment, indicative of VHL transcriptional inhibition. In line with decreased VHL expression in E-PE, augmented E2F4-VHL association was also observed in E-PE placental tissue relative to controls. In conclusion, we demonstrate for the first time that hypomethylation of VHL DNA at a key transcription factor binding site has significant consequences for its transcriptional repression in early-onset preeclampsia.


Assuntos
Regulação para Baixo , Fator de Transcrição E2F4/metabolismo , Pré-Eclâmpsia/genética , Fator de Crescimento Transformador beta3/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Idade de Início , Linhagem Celular Tumoral , Ilhas de CpG , Metilação de DNA , Fator de Transcrição E2F4/genética , Epigênese Genética , Feminino , Células HEK293 , Humanos , Placenta/química , Pré-Eclâmpsia/metabolismo , Gravidez , Regiões Promotoras Genéticas , Transcrição Gênica , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
10.
J Clin Endocrinol Metab ; 103(4): 1545-1557, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373688

RESUMO

Context: The von Hippel Lindau (VHL) protein is a key executor of the cellular hypoxic response that is compromised in preeclampsia, a serious disorder complicating 5% to 7% of pregnancies. To date, the mechanisms controlling VHL gene expression in the human placenta remain elusive. Objective: We examined VHL epigenetic regulation in normal pregnancy and in preeclampsia, a pathology characterized by placental hypoxia. Design, Setting, and Participants: Placentae were obtained from early-onset preeclampsia (n = 56; <34 weeks of gestation) and late-onset preeclampsia (n = 19; ≥34 weeks of gestation). Placentae from healthy normotensive age-matched preterm control (n = 43) and term control (n = 23) pregnancies were included as controls. Main Outcome Measure(s): We measured the activity of Jumonji domain containing protein 6 (JMJD6), a ferrous iron (Fe2+)- and oxygen-dependent histone demethylase, and examined its function in the epigenetic control of VHL. Results: JMJD6 regulates VHL gene expression in the human placenta. VHL downregulation in preeclampsia is dependent on decreased JMJD6 demethylase activity due to hypoxia and reduced Fe2+ bioavailability. Chromatin immunoprecipitation assays revealed decreased association of JMJD6 and its histone targets with the VHL promoter. Findings in preeclampsia were corroborated in a murine model of pharmacological hypoxia using FG-4592. Placentae from FG-4592-treated mice exhibited reduced VHL levels, accompanied by placental morphological alterations and reduced pup weights. Notably, Fe2+ supplementation rescued JMJD6 histone demethylase activity in histone from E-PE and FG-4592-treated mice. Conclusions: Our study uncovers epigenetic regulation of VHL and its functional consequences for altered oxygen and iron homeostasis in preeclampsia.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Adulto , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Pré-Eclâmpsia/genética , Gravidez , Regiões Promotoras Genéticas , Proteína Supressora de Tumor Von Hippel-Lindau/genética
11.
Cell Death Dis ; 8(2): e2590, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28151467

RESUMO

Preeclampsia, a serious hypertensive disorder of pregnancy, is characterized by elevated ceramide (CER) content that is responsible for heightened trophoblast cell death rates via apoptosis and autophagy. Whether trophoblast cells undergo necroptosis, a newly characterized form of regulated necrosis, and the potential role of CER in this process remain to be established. Herein, we report that exposure of both JEG3 cells and primary isolated cytotrophoblasts to C16:0 CER in conjunction with a caspase-8 inhibitor (Q-VD-OPh) promoted necroptotic cell death, as evidenced by increased expression and association of receptor-interacting protein kinases RIP1 and RIP3, as well as phosphorylation of mixed lineage kinase domain-like (MLKL) protein. MLKL activation and oligomerization could be abrogated by pretreatment with the necroptosis inhibitor necrostatin-1 (Nec-1). CER+Q-VD-OPH-treated primary trophoblasts displayed striking necrotic morphology along with disrupted fusion processes as evidenced by maintenance of E-cadherin-stained membrane boundaries and reduced glial cell missing-1 expression, but these events were effectively reversed using Nec-1. Of clinical relevance, we established an increased susceptibility to necroptotic cell death in preeclamptic placentae relative to normotensive controls. In preeclampsia, increased necrosome (RIP1/RIP3) protein levels, as well as MLKL activation and oligomerization associated with necrotic cytotrophoblast morphology. In addition, caspase-8 activity was reduced in severe early-onset preeclampsia cases. This study is the first to report that trophoblast cells undergo CER-induced necroptotic cell death, thereby contributing to the increased placental dysfunction and cell death found in preeclampsia.


Assuntos
Morte Celular/fisiologia , Ceramidas/metabolismo , Necrose/metabolismo , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caderinas/metabolismo , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Imidazóis/metabolismo , Indóis/metabolismo , Necrose/tratamento farmacológico , Necrose/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Placenta/metabolismo , Placenta/patologia , Pré-Eclâmpsia/patologia , Gravidez , Proteínas Quinases/metabolismo , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia
12.
Oncotarget ; 8(69): 114002-114018, 2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371964

RESUMO

Adaptations to changes in oxygen are critical to ensure proper placental development, and impairments in oxygen sensing mechanisms characterize placental pathologies such as preeclampsia. In this study, we examined the involvement of SUMOylation, a reversible posttranslational modification, in the regulation of the asparaginyl hydroxylase Factor Inhibiting Hypoxia Inducible Factor 1 (FIH1) in the human placenta in development and in disease status. FIH1 protein abundance and spatial distribution in the developing placenta directly correlated with oxygen tension in vivo. Immunofluorescence analysis showed that early on FIH1 primarily localized to nuclei of cytotrophoblast cells, while after 10 weeks of gestation it was present in nuclei and cytoplasm of both cytotrophoblast and syncytiotrophoblast cells. Exposure of choriocarcinoma JEG-3 cells to hypoxia induced FIH1 SUMOylation by promoting its association to SUMO2/3. Transfection of JEG-3 cells with FIH1 constructs containing SUMO-mutated sites revealed that SUMOylation of FIH1 by SUMO2/3 targeted it for proteasomal degradation, particularly in hypoxia. SUMOylation of FIH1 directly impacted on HIF1A activity as determined by HIF-responsive luciferase assay. Co-immunoprecipitation analyses revealed enhanced FIH1-SUMO2/3 associations early in development, when FIH1 levels are low, while deSUMOylation of FIH1 by SENP3 increased later in gestation, when FIH1 levels are rising. In preeclampsia, decreased FIH1 protein expression associated with impaired deSUMOylation by SENP3 and increased association with the ubiquitin ligase RNF4. We propose a novel mode of regulation of FIH1 stability by dynamic SUMOylation and deSUMOylation in the human placenta in response to changing oxygen tension, thereby mediating HIF1A transcriptional activity in physiological and pathological conditions.

13.
Placenta ; 40: 8-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27016777

RESUMO

INTRODUCTION: Hypoxia-inducible factor 1A (HIF1A) stability is tightly regulated by hydroxylation and ubiquitination. Emerging evidence indicates that HIF1A is also controlled by the interplay between SUMO-specific ligases, which execute protein SUMOylation, and Sentrin/SUMO-specific proteases that de-SUMOylate target proteins. Given the significance of HIF1A in the human placenta, we investigated whether placental HIF1A is subject to SUMOylation in physiological and pathological conditions. METHODS: Placentae were obtained from normal and pregnancies complicated by preeclampsia. Human choriocarcinoma JEG3 cells were maintained at either 21% or 3% oxygen or exposed to sodium nitroprusside (SNP). Cells were transfected with SUMO2/3 constructs with and without Mg132, a proteasome inhibitor. Expression, distribution and associations of SUMO/SENPs and HIF1A were evaluated by Western blotting, immunohistochemistry and co-immunoprecipitation. RESULTS: HIF1A-SUMO2/3 associations peaked at 9-10 weeks, while its deSUMOylation by SENP3 was greatest at 10-12 weeks. In E-PE, HIF1A deSUMOylation by SENP3 was significantly elevated, while HIF1A-SUMO2/3 associations remained constant. In vitro, overexpression of SUMO2/3 de-stabilized HIF1A in hypoxia, and abrogated HIF1A expression following Mg132 treatment in normoxia. Hypoxia and SNP treatments promoted SENP3 nuclear redistribution from nucleoli to the nucleoplasm where it associates with HIF1A. CONCLUSION: During early placental development, SUMOylation events control HIF1A stability in an oxygen-dependent manner. In E-PE, enhanced deSUMOylation of HIF1A by SENP3 may in part contribute to increased HIF1A activity and stability found in this pathology.


Assuntos
Cisteína Endopeptidases/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Sumoilação , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Humanos , Hipóxia/metabolismo , Placentação , Gravidez , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitinas/metabolismo
14.
Endocrinology ; 156(8): 3012-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26037477

RESUMO

Persistent low oxygen is implicated in the pathogenesis of placental-associated pathologies such as preeclampsia, a serious disorder of pregnancy. Emerging evidence implicates a novel family of Jumonji C catalytic domain proteins as mediators of hypoxic gene expression. Here, we investigated the regulatory relationship between Jumonji C domain containing protein 6 (JMJD6) and hypoxia-inducible factor (HIF)1A in the human placenta at physiological and pathological conditions. JMJD6 expression inversely correlated with changes in oxygen tension during early placental development, ie, high at 7-9 weeks when-partial pressure of O2 is low and declining afterwards when-partial pressure of O2 increases. Moreover, JMJD6 protein was significantly elevated in early-onset preeclamptic placentae, localizing to the syncytiotrophoblast layer and syncytial knots. Exposure of primary isolated trophoblast cells, human villous explants, and JEG3 choriocarcinoma cells to low oxygen (3%) and sodium nitroprusside (inducer of oxidative stress) also resulted in elevated JMJD6 levels, which was abrogated by HIF1A knockdown. In normoxia, knockdown of JMJD6 in JEG3 cells stabilized HIF1A with a concomitant decrease in von Hippel-Lindau (VHL) tumor suppressor protein, a negative regulator of HIF1A stability. In contrast, overexpression of JMJD6 enhanced VHL expression and destabilized HIF1A. JMJD6 regulation of VHL stability did not involve the ubiquitin-proteasome system but likely occurred through lysyl hydroxylation and small ubiquitin-like modifier 1-dependent small ubiquitin-like modifierylation. In summary, our data signify a novel role for JMJD6 as an oxygen sensor in the human placenta, and alterations in the JMJD6-VHL-HIF1A feedback loop may indirectly contribute to elevated HIF1A found in preeclampsia.


Assuntos
Biomarcadores , Histona Desmetilases com o Domínio Jumonji/fisiologia , Oxigênio/metabolismo , Placenta/metabolismo , Idade de Início , Biomarcadores/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Feminino , Idade Gestacional , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Oxigênio/farmacologia , Placenta/patologia , Placentação , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez
15.
PLoS One ; 6(12): e28863, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216129

RESUMO

BACKGROUND: Alcohol abuse is a leading cause of pancreatitis in humans. However, rodent models suggest that alcohol only sensitizes the pancreas to subsequent insult, indicating that additional factors play a role in alcohol-induced pancreatic injury. The goal of this study was to determine if an absence of MIST1, a transcription factor required for complete differentiation of pancreatic acinar cells in mice, increased the sensitivity to alcohol. METHODS: Two to four month-old mice lacking MIST1 (Mist1(-/-)) or congenic C57 Bl6 mice were placed on a Lieber-DeCarli diet (36% of total kcal from ethanol and fat), a control liquid diet (36% kcal from fat) or a regular breeding chow diet (22% kcal from fat). After six weeks, pancreatic morphology was assessed. Biochemical and immunofluorescent analysis was used to assess mediators of the unfolded protein response (UPR). RESULTS: Ethanol-fed Mist1(-/-) mice developed periductal accumulations of inflammatory cells that did not appear in wild type or control-fed Mist1(-/-) mice. Wild type mice fed diets high in ethanol or fat showed enhancement of the UPR based on increased accumulation of peIF2α and spliced XBP1. These increases were not observed in Mist1(-/-) pancreatic tissue, which had elevated levels of UPR activity prior to diet exposure. Indeed, exposure to ethanol resulted in a reduction of UPR activity in Mist1(-/-) mice. CONCLUSIONS: Our findings suggest that an absence of MIST1 increases the sensitivity to ethanol that correlated with decreased activity of the UPR. Therefore, events that affect the expression and/or function of MIST1 may be confounding factors in pancreatitis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Etanol/farmacologia , Pâncreas/efeitos dos fármacos , Resposta a Proteínas não Dobradas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/citologia , Pâncreas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...